Skip to content

KotaDB API Reference

Overview

KotaDB provides multiple API layers for different use cases:

  1. Native Rust API - Direct library usage
  2. HTTP REST API - RESTful endpoints for document operations
  3. Client Libraries - Python and TypeScript/JavaScript clients
  4. MCP Server API - JSON-RPC for LLM integration
  5. CLI Interface - Command-line tools

Native Rust API

Storage Operations

Document Management

use kotadb::{DocumentBuilder, create_file_storage};

// Create storage with Stage 6 safety wrappers
let mut storage = create_file_storage("./data", Some(1000)).await?;

// Create a document
let doc = DocumentBuilder::new()
    .path("/knowledge/rust-patterns.md")?
    .title("Advanced Rust Design Patterns")?
    .content(b"# Advanced Rust Patterns\n\nThis covers...")?
    .build()?;

// Store document (automatically traced, validated, cached, with retries)
storage.insert(doc.clone()).await?;

// Retrieve document (cache-optimized)
let retrieved = storage.get(&doc.id).await?;

Query Operations

use kotadb::{QueryBuilder, create_primary_index};

// Create index
let mut index = create_primary_index("./index", 1000)?;

// Build query
let query = QueryBuilder::new()
    .with_text("rust patterns")?
    .with_tag("programming")?
    .with_date_range(start_time, end_time)?
    .with_limit(25)?
    .build()?;

// Execute search
let results = index.search(&query).await?;

Performance Optimization

use kotadb::{create_optimized_index_with_defaults, OptimizationConfig};

// Create optimized index with automatic bulk operations
let primary_index = create_primary_index("/data/index", 1000)?;
let mut optimized_index = create_optimized_index_with_defaults(primary_index);

// Bulk operations automatically applied for 10x speedup
let pairs = vec![(id1, path1), (id2, path2), /* ... */];
let result = optimized_index.bulk_insert(pairs)?;
assert!(result.meets_performance_requirements(10.0)); // 10x speedup

Client Libraries

Python Client

The Python client provides a simple, PostgreSQL-level interface for KotaDB operations.

from kotadb import KotaDB

# Connect to KotaDB
db = KotaDB("http://localhost:8080")  # or use KOTADB_URL env var

# Insert a document
doc_id = db.insert({
    "path": "/notes/meeting.md",
    "title": "Team Meeting Notes",
    "content": "Discussed project roadmap...",
    "tags": ["work", "meeting"]
})

# Query documents
results = db.query("project roadmap")
for result in results.results:
    print(f"{result.document.title}: {result.score}")

# Get a specific document
doc = db.get(doc_id)

# Update a document
db.update(doc_id, {"content": "Updated content..."})

# Delete a document
db.delete(doc_id)

# Bulk operations
docs = [
    {"path": "/doc1.md", "content": "First document"},
    {"path": "/doc2.md", "content": "Second document"}
]
doc_ids = db.bulk_insert(docs)

TypeScript/JavaScript Client

The TypeScript client provides type-safe access to KotaDB with full async/await support.

import { KotaDB } from 'kotadb-client';

// Connect to KotaDB
const db = new KotaDB({ url: 'http://localhost:8080' });

// Insert a document
const docId = await db.insert({
  path: '/notes/meeting.md',
  title: 'Team Meeting Notes',
  content: 'Discussed project roadmap...',
  tags: ['work', 'meeting']
});

// Query documents
const results = await db.query('project roadmap');
results.results.forEach(result => {
  console.log(`${result.document.title}: ${result.score}`);
});

// Get a specific document
const doc = await db.get(docId);

// Update a document
await db.update(docId, { content: 'Updated content...' });

// Delete a document
await db.delete(docId);

// Bulk operations
const docs = [
  { path: '/doc1.md', content: 'First document' },
  { path: '/doc2.md', content: 'Second document' }
];
const docIds = await db.bulkInsert(docs);

HTTP REST API

The HTTP server provides RESTful endpoints for document operations.

Endpoints

POST /documents

Create a new document.

curl -X POST http://localhost:8080/documents \
  -H "Content-Type: application/json" \
  -d '{
    "path": "/test.md",
    "title": "Test Document",
    "content": "Test content",
    "tags": ["test"]
  }'

GET /documents/:id

Retrieve a document by ID.

curl http://localhost:8080/documents/550e8400-e29b-41d4-a716-446655440000

PUT /documents/:id

Update an existing document.

curl -X PUT http://localhost:8080/documents/550e8400-e29b-41d4-a716-446655440000 \
  -H "Content-Type: application/json" \
  -d '{
    "content": "Updated content"
  }'

DELETE /documents/:id

Delete a document.

curl -X DELETE http://localhost:8080/documents/550e8400-e29b-41d4-a716-446655440000

Search for documents.

curl "http://localhost:8080/search?q=rust+programming&limit=10"

MCP Server API

Connection

# Start MCP server
kotadb mcp-server --config kotadb.toml --port 8080

Tools

{
    "jsonrpc": "2.0",
    "id": 1,
    "method": "tools/call",
    "params": {
        "name": "kotadb://semantic_search",
        "arguments": {
            "query": "machine learning algorithms for natural language processing",
            "limit": 10,
            "include_metadata": true,
            "min_relevance": 0.7
        }
    }
}

Response:

{
    "jsonrpc": "2.0",
    "id": 1,
    "result": {
        "content": [
            {
                "type": "text",
                "text": "Found 8 documents related to machine learning algorithms for NLP"
            }
        ],
        "documents": [
            {
                "id": "doc_123",
                "path": "/ml/transformers.md",
                "title": "Transformer Architecture for NLP",
                "relevance_score": 0.94,
                "summary": "Comprehensive overview of transformer models...",
                "metadata": {
                    "created": "2024-01-15T10:30:00Z",
                    "updated": "2024-01-20T14:22:00Z",
                    "word_count": 2450,
                    "tags": ["ml", "nlp", "transformers"]
                }
            }
        ]
    }
}

Document Operations

{
    "jsonrpc": "2.0",
    "id": 2,
    "method": "tools/call",
    "params": {
        "name": "kotadb://insert_document",
        "arguments": {
            "path": "/knowledge/new-insights.md",
            "title": "New AI Research Insights",
            "content": "# AI Research\n\nRecent developments...",
            "tags": ["ai", "research", "insights"],
            "metadata": {
                "source": "research_paper",
                "author": "Dr. Smith"
            }
        }
    }
}

Graph Traversal

{
    "jsonrpc": "2.0",
    "id": 3,
    "method": "tools/call",
    "params": {
        "name": "kotadb://graph_search",
        "arguments": {
            "start_document": "/projects/ai-research.md",
            "relationship_types": ["references", "related_to", "cites"],
            "max_depth": 3,
            "min_relevance": 0.7,
            "include_path": true
        }
    }
}

Resources

Document Collections

{
    "jsonrpc": "2.0",
    "id": 4,
    "method": "resources/read",
    "params": {
        "uri": "kotadb://documents/?filter=recent&limit=20"
    }
}

Analytics Data

{
    "jsonrpc": "2.0",
    "id": 5,
    "method": "resources/read",
    "params": {
        "uri": "kotadb://analytics/patterns?timeframe=30d"
    }
}

Error Handling

{
    "jsonrpc": "2.0",
    "id": 1,
    "error": {
        "code": -32602,
        "message": "Invalid params",
        "data": {
            "type": "ValidationError",
            "details": "Query text cannot be empty",
            "field": "query"
        }
    }
}

CLI Interface

Basic Operations

# Initialize database
kotadb init --data-dir ./data

# Index documents
kotadb index ./documents --recursive

# Search
kotadb search "rust programming patterns"

# Semantic search
kotadb search --semantic "concepts related to database optimization"

# Graph traversal
kotadb graph --start "/docs/architecture.md" --depth 2

Advanced Operations

# Performance analysis
kotadb analyze --performance --timeframe 30d

# Index maintenance
kotadb reindex --type trigram --optimize

# Export data
kotadb export --format json --output backup.json

# Health check
kotadb health --verbose

Configuration

Database Configuration

[database]
data_directory = "./data"
cache_size_mb = 512
enable_wal = true
sync_mode = "normal"

[indices]
primary_cache_size = 100
trigram_cache_size = 200
vector_cache_size = 300

[performance]
bulk_operation_threshold = 100
concurrent_readers = 8
enable_optimization = true

[mcp_server]
enabled = true
host = "localhost"
port = 8080
max_connections = 100
timeout_seconds = 30
enable_cors = false
allowed_origins = []

[logging]
level = "info"
format = "json"
log_to_file = true
log_directory = "./logs"

[security]
enable_auth = false
api_key_required = false
rate_limit_per_minute = 1000

Performance Characteristics

Operation Latency Target Throughput Notes
Document Insert <1ms 1,250/sec Single document
Bulk Insert <200ms 10,000/sec Batch of 1,000
Text Search <3ms 333/sec Trigram index
Semantic Search <10ms 100/sec Vector similarity
Graph Traversal <8ms 125/sec Depth 2

Error Codes

Code Name Description
1001 DocumentNotFound Document ID not found
1002 InvalidPath Invalid document path
1003 ValidationError Data validation failed
1004 IndexCorruption Index integrity check failed
1005 StorageError Storage operation failed
1006 PerformanceLimit Query exceeded performance limits
1007 AuthenticationError Invalid credentials
1008 RateLimitExceeded Too many requests

Examples Repository

Complete examples available in the examples/ directory:

  • basic_usage.rs - Getting started with KotaDB
  • advanced_queries.rs - Complex search operations
  • mcp_client.rs - MCP server integration
  • performance_optimization.rs - Bulk operations and caching
  • custom_indices.rs - Building custom index types

SDK Integrations

Python Client (Planned)

import kotadb

# Connect to MCP server
client = kotadb.MCPClient("http://localhost:8080")

# Semantic search
results = await client.semantic_search(
    "machine learning algorithms",
    limit=10,
    min_relevance=0.8
)

for doc in results:
    print(f"{doc.title}: {doc.relevance_score}")

TypeScript Client (Planned)

import { KotaDBClient } from '@kotadb/client';

const client = new KotaDBClient('http://localhost:8080');

const results = await client.semanticSearch({
  query: 'database optimization techniques',
  limit: 5,
  includeMetadata: true
});

Support