MCP Server Integration Plan - KotaDB¶
Overview¶
This plan outlines the integration of KotaDB with the Model Context Protocol (MCP) to enable seamless LLM interaction with the knowledge database. The goal is to make KotaDB the premier database for AI-driven knowledge management and retrieval.
MCP Server Architecture¶
graph TB
subgraph "LLM Client (Claude, GPT, etc.)"
A[Language Model]
B[MCP Client]
end
subgraph "KotaDB MCP Server"
C[JSON-RPC Interface]
D[Request Router]
E[Query Engine]
F[Document Manager]
G[Semantic Search]
H[Metadata Extractor]
end
subgraph "KotaDB Core"
I[Storage Engine]
J[Primary Index]
K[Trigram Index]
L[Vector Index]
M[File Storage]
end
A --> B
B --> C
C --> D
D --> E
D --> F
D --> G
D --> H
E --> I
F --> I
G --> L
H --> J
I --> M
MCP Server Capabilities¶
1. Tools (Operations LLMs can perform)¶
Document Operations¶
kotadb://insert_document
- Add new documents to the databasekotadb://update_document
- Modify existing documentskotadb://delete_document
- Remove documentskotadb://get_document
- Retrieve document by ID or path
Search Operations¶
kotadb://semantic_search
- Find documents by meaning/conceptkotadb://text_search
- Full-text search with trigramskotadb://graph_search
- Traverse document relationshipskotadb://temporal_search
- Search by time ranges
Analysis Operations¶
kotadb://analyze_patterns
- Identify recurring themeskotadb://extract_insights
- Generate insights from document corpuskotadb://find_connections
- Discover relationships between documentskotadb://summarize_collection
- Summarize groups of documents
2. Resources (Read-only access to database state)¶
Collections¶
kotadb://documents/
- Browse all documentskotadb://tags/
- Browse available tagskotadb://recent/
- Recently modified documentskotadb://popular/
- Frequently accessed documents
Analytics¶
kotadb://metrics/
- Database performance metricskotadb://health/
- System health statuskotadb://schema/
- Database schema information
3. Prompts (Pre-configured interactions)¶
Knowledge Management¶
analyze_knowledge_gaps
- Identify missing informationsuggest_related_content
- Recommend related documentsgenerate_summary
- Create document summariesextract_action_items
- Find actionable items
Implementation Phases¶
Phase 1: Core MCP Server (Week 1-2)¶
Goal: Basic JSON-RPC server with essential document operations
Deliverables: - src/mcp/
- MCP server module - src/mcp/server.rs
- JSON-RPC server implementation - src/mcp/tools/
- Tool implementations - src/mcp/resources/
- Resource handlers - Basic document CRUD operations via MCP
Key Components:
// src/mcp/server.rs
pub struct KotaDbMcpServer {
storage: Arc<dyn Storage>,
primary_index: Arc<dyn Index>,
config: McpServerConfig,
}
// src/mcp/tools/document.rs
pub struct DocumentTools {
storage: Arc<dyn Storage>,
}
impl DocumentTools {
pub async fn insert_document(&self, args: InsertDocumentArgs) -> McpResult<DocumentResponse> { ... }
pub async fn search_documents(&self, args: SearchArgs) -> McpResult<SearchResponse> { ... }
}
Phase 2: Semantic Search Integration (Week 3)¶
Goal: Advanced semantic search capabilities
Deliverables: - Vector embedding integration - Semantic similarity search - Concept-based document discovery - Natural language query processing
Key Features: - Convert natural language queries to semantic vectors - Find conceptually similar documents - Support for "find documents about X" queries - Contextual search within document collections
Phase 3: Graph Operations (Week 4)¶
Goal: Knowledge graph traversal and relationship discovery
Deliverables: - Document relationship mapping - Graph traversal tools - Connection discovery algorithms - Relationship strength scoring
Key Features: - Follow citation chains and references - Discover implicit connections between documents - Map concept relationships across documents - Generate knowledge graphs for visualization
Phase 4: Advanced Analytics (Week 5-6)¶
Goal: AI-powered insights and pattern recognition
Deliverables: - Pattern detection algorithms - Insight generation tools - Trend analysis capabilities - Knowledge gap identification
Key Features: - Identify recurring themes and patterns - Generate insights from document corpus - Track knowledge evolution over time - Suggest areas for knowledge expansion
Technical Implementation Details¶
JSON-RPC Protocol Implementation¶
// src/mcp/protocol.rs
#[derive(Debug, Serialize, Deserialize)]
pub struct McpRequest {
pub jsonrpc: String,
pub id: Option<Value>,
pub method: String,
pub params: Option<Value>,
}
#[derive(Debug, Serialize, Deserialize)]
pub struct McpResponse {
pub jsonrpc: String,
pub id: Option<Value>,
pub result: Option<Value>,
pub error: Option<McpError>,
}
// Tool implementations
#[async_trait]
pub trait McpTool {
async fn execute(&self, params: Value) -> McpResult<Value>;
fn schema(&self) -> ToolSchema;
}
Configuration System¶
# kotadb-mcp.toml
[server]
host = "localhost"
port = 8080
max_connections = 100
timeout_seconds = 30
[features]
semantic_search = true
graph_operations = true
analytics = true
real_time_updates = false
[limits]
max_results_per_query = 1000
max_query_complexity = 10
rate_limit_per_minute = 60
[storage]
cache_size_mb = 512
index_memory_limit_mb = 1024
Error Handling¶
// src/mcp/error.rs
#[derive(Debug, thiserror::Error)]
pub enum McpError {
#[error("Parse error: {0}")]
ParseError(String),
#[error("Invalid request: {0}")]
InvalidRequest(String),
#[error("Method not found: {0}")]
MethodNotFound(String),
#[error("Storage error: {0}")]
StorageError(#[from] anyhow::Error),
#[error("Query timeout")]
Timeout,
}
Integration Examples¶
Basic Document Search¶
{
"jsonrpc": "2.0",
"id": 1,
"method": "tools/call",
"params": {
"name": "kotadb://semantic_search",
"arguments": {
"query": "machine learning algorithms for natural language processing",
"limit": 10,
"include_metadata": true
}
}
}
Response¶
{
"jsonrpc": "2.0",
"id": 1,
"result": {
"content": [
{
"type": "text",
"text": "Found 8 documents related to machine learning algorithms for NLP"
}
],
"documents": [
{
"id": "doc_123",
"path": "/ml/transformers.md",
"title": "Transformer Architecture for NLP",
"relevance_score": 0.94,
"summary": "Comprehensive overview of transformer models..."
}
]
}
}
Knowledge Graph Exploration¶
{
"jsonrpc": "2.0",
"id": 2,
"method": "tools/call",
"params": {
"name": "kotadb://graph_search",
"arguments": {
"start_document": "/projects/ai-research.md",
"relationship_types": ["references", "related_to"],
"max_depth": 3,
"min_relevance": 0.7
}
}
}
Performance Considerations¶
Caching Strategy¶
- Cache semantic embeddings for frequently accessed documents
- LRU cache for search results
- Pre-compute popular query patterns
- Background index warming
Query Optimization¶
- Index semantic vectors for sub-10ms lookup
- Batch similar queries for efficiency
- Implement query result streaming for large datasets
- Use approximate algorithms for real-time responses
Scalability Features¶
- Horizontal scaling support for multiple MCP server instances
- Load balancing for high-throughput scenarios
- Connection pooling for database access
- Background processing for complex analytics
Security & Privacy¶
Authentication¶
- API key-based authentication for MCP clients
- Rate limiting per client
- Audit logging of all operations
- Encrypted connections (TLS)
Data Privacy¶
- Local-only operation (no cloud dependencies)
- Configurable data retention policies
- Secure document deletion with overwriting
- Access control for sensitive documents
Testing Strategy¶
Unit Tests¶
- Individual tool implementations
- Protocol serialization/deserialization
- Error handling scenarios
- Performance benchmarks
Integration Tests¶
- End-to-end MCP client-server communication
- Multi-document operations
- Concurrent access patterns
- Failure recovery scenarios
Performance Tests¶
- Query latency under load
- Memory usage during large operations
- Concurrent client handling
- Cache effectiveness metrics
Deployment Options¶
Standalone Server¶
# Start MCP server
kotadb mcp-server --config kotadb-mcp.toml --data-dir ./data
# Connect from LLM client
export KOTADB_MCP_URL="http://localhost:8080"
Embedded Mode¶
// Embed in larger application
use kotadb::mcp::KotaDbMcpServer;
let server = KotaDbMcpServer::new(storage, config).await?;
server.serve_on_port(8080).await?;
Docker Deployment¶
# docker-compose.yml
version: '3.8'
services:
kotadb-mcp:
image: ghcr.io/jayminwest/kota-db:latest
command: ["mcp-server", "--config", "/config/kotadb-mcp.toml"]
ports:
- "8080:8080"
volumes:
- ./data:/data
- ./config:/config
Success Metrics¶
Functional Goals¶
- Support all core MCP protocol features
- <10ms response time for simple queries
- <100ms response time for semantic searches
- 99.9% uptime under normal load
- Handle 1000+ concurrent connections
Quality Goals¶
- 100% test coverage for MCP components
- Comprehensive error handling
- Production-ready logging and monitoring
- Security audit compliance
- Documentation for all public APIs
Integration Goals¶
- Compatible with major LLM providers (OpenAI, Anthropic, etc.)
- Seamless integration with existing knowledge management workflows
- Support for popular MCP client libraries
- Example integrations with VSCode, Jupyter, etc.
Next Steps: 1. Implement basic MCP server framework 2. Add core document operations 3. Integrate semantic search capabilities 4. Build comprehensive test suite 5. Create deployment documentation 6. Develop example client integrations
This MCP integration will make KotaDB the go-to database for LLM-powered knowledge management and retrieval systems.